organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jian-Chao Liu, Hong-Wu He* and Ming-Wu Ding

Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail: he1208@public.wh.hb.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.007 Å R factor = 0.087 wR factor = 0.211 Data-to-parameter ratio = 14.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2-(4-Chloro-3-methylphenoxy)-3-(4-chlorophenyl)-5-methyl-8,9,10,11-tetrahydro-1-benzothieno-[2',3':2,3]pyrido[4,3-*d*]pyrimidin-4(3*H*)-one dichloromethane solvate

In the structure of the title compound, $C_{27}H_{21}Cl_2N_3O_2S$ -CH₂Cl₂, the C–S bond lengths in the thiophene ring [1.744 (5) and 1.745 (5) Å] are equivalent and long compared with the values observed in both free thiophene, measured using electron diffraction, and thieno[2,3-*c*]pyridine. The central thienopyridine ring system is nearly planar and the dihedral angle between the thiophene and pyridine planes is 0.9 (1)°.

Comment

Many pyrido[4,3-*d*]pyrimidines have pharmaceutical activity and germicidal action (Anderson & Broom, 1977). An important synthetic route to pyrido[4,3-*d*]pyrimidine is the condensation reaction of 4-aminonicotinic acid and amines (Ismail & Wibberley, 1967). However, this method often requires a long reaction time. Recently, we have developed a new and facile regioselective annulation process, which proceeds smoothly under mild conditions *via* a tandem aza-Wittig and cyclization reaction, to synthesize novel pyrido[4,3*d*]pyrimidine derivatives (Zhou *et al.*, 2005). In this paper, the crystal structure of the title compound, (I), is reported. The structure of (I) was also characterized by ¹H NMR, MS and elemental analyses.

The molecular structure of (I) is shown in Fig. 1. The C–S bond lengths in the thiophene ring [1.744 (5) and 1.745 (5) Å] are equivalent and long compared with the values observed in both free thiophene (1.714 Å; Bonham & Momany, 1963). The C11–N1–C7 angle of 116.6 (4)° is typical of a non-protonated ring system, being smaller than 120° (Ghosh & Simonsen, 1993). The central thienopyridine ring system is nearly planar and the dihedral angle between the thiophene and pyridine planes is 0.9 (1)°.

Experimental

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved The title compound was prepared according to the literature procedure of Zhou *et al.* (2005). Suitable crystals of (I) were obtained by Received 26 September 2005 Accepted 10 October 2005 Online 15 October 2005 evaporation of a dichoromethane solution (m.p. 533–534 K). Analysis, calculated for $C_{28}H_{23}Cl_4N_3O_2S$: C 55.37, H 3.82, N 6.92%; found: C 55.26, H 3.93, N 7.15%. Spectroscopis analysis: IR (KBr, ν , cm⁻¹): 3124 (Ph-H), 2936, 2859 (C-H), 1701 (C=O), 1616, 1562, 1517, 1489, 1161, 1051, 748; ¹H NMR (CDCl₃, TMS, 400 MHz, δ , p.p.m.): 1.65–1.81 (*m*, 2H, 2CH₂), 2.47 (*s*, 3H, CH₃), 2.48–2.82 (*m*, 4H, 2CH₂), 3.05 (*s*, 3H, CH₃), 6.91–7.58 (*m*, 7H, Ar–H). MS (EI, %): 524 (M^+ + 2 62), 523 (M^+ + 1 49), 522 (M^+ 100), 506 (19), 493 (14), 396 (17), 380 (28).

> Mo $K\alpha$ radiation Cell parameters from 3753 reflections $\theta = 2.3-19.8^{\circ}$ $\mu = 0.52 \text{ mm}^{-1}$ T = 293 (2) K Plate, colourless $0.30 \times 0.20 \times 0.20 \text{ mm}$

Crystal data

$C_{27}H_{21}Cl_2N_3O_2S{\cdot}CH_2Cl_2$
$M_r = 607.35$
Orthorhombic, Pbca
a = 18.564 (3) Å
b = 10.6834 (17) Å
c = 28.510 (4) Å
$V = 5654.3 (15) \text{ Å}^3$
Z = 8
$D_x = 1.427 \text{ Mg m}^{-3}$

Data collection

3655 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.050$
$\theta_{\rm max} = 25.0^{\circ}$
$h = -17 \rightarrow 22$
$k = -12 \rightarrow 12$
$l = -33 \rightarrow 33$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0768P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.087$	+7.6281P]
$wR(F^2) = 0.211$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.10	$(\Delta/\sigma)_{\rm max} < 0.001$
4964 reflections	$\Delta \rho_{\rm max} = 0.40 \ {\rm e} \ {\rm \AA}^{-3}$
346 parameters	$\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

C6-S1	1.744 (5)	C14-N2	1.275 (5)
C7-N1	1.338 (6)	C14-N3	1.370 (5)
C7-S1	1.745 (5)	C15-N3	1.444 (5)
C9-N2	1.382 (5)	C16-C17	1.377 (7)
C11-N1	1.324 (6)	C17-C18	1.376 (7)
C13-N3	1.419 (5)		
N2-C14-N3	126.5 (4)	C14-N3-C15	121.2 (3)
O2-C14-N3	112.0 (3)	C13-N3-C15	118.5 (3)
C11-N1-C7	116.6 (4)	C14-O2-C21	116.5 (3)
C14-N2-C9	116.6 (3)	C6-S1-C7	91.2 (2)
C14-N3-C13	120.2 (3)		

H atoms were refined with fixed geometry, with C—H distances in the range 0.93–0.97 Å, riding on their carrier atoms, with $U_{\rm iso}({\rm H})$ set to 1.2 (1.5 for the methyl H atoms) times $U_{\rm eq}$ of the parent atom.

Figure 1

The molecular structure of the title compound, showing 50% probability displacement ellipsoids.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1998); software used to prepare material for publication: *SHELXTL*.

The authors gratefully acknowledge financial support of this work by the National Key Project for Basic Research and the National Natural Science Foundation of China (grant Nos. 2003CB114400 and 20372023).

References

- Anderson, G. L. & Broom, A. D. (1977). J. Org. Chem. 42, 997-1001.
- Bonham, R. A. & Momany, F. A. (1963). J. Phys. Chem. 67, 2474-2477.
- Bruker (1998). SMART (Version 5.618), SAINT (Version 6.02) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA. Ghosh, R. & Simonsen, S. H. (1993). Acta Cryst. C49, 1031–1032.
- Ismail, A. G. & Wibberley, D. G. (1995). *Acta Cryst.* **C49**, 1051–1052.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97, University of Göttingen, Germany.
- Zhou, H. B., Cui, Z. P., Liu J. C., He, H. W. & Ding, M. W. (2005). J. Central China Normal Univ. 39, 343–346.