Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jian-Chao Liu, Hong-Wu He* and Ming-Wu Ding

Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail:
he1208@public.wh.hb.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.087$
$w R$ factor $=0.211$
Data-to-parameter ratio $=14.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

2-(4-Chloro-3-methylphenoxy)-3-(4-chlorophenyl)-5-methyl-8,9,10,11-tetrahydro-1-benzothieno[2', $3^{\prime}: 2,3$]pyrido[4,3-d]pyrimidin-4(3H)-one dichloromethane solvate

In the structure of the title compound, $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$-$\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the $\mathrm{C}-\mathrm{S}$ bond lengths in the thiophene ring [1.744 (5) and 1.745 (5) A] are equivalent and long compared with the values observed in both free thiophene, measured using electron diffraction, and thieno[2,3-c]pyridine. The central thienopyridine ring system is nearly planar and the dihedral angle between the thiophene and pyridine planes is $0.9(1)^{\circ}$.

Comment

Many pyrido $[4,3-d$]pyrimidines have pharmaceutical activity and germicidal action (Anderson \& Broom, 1977). An important synthetic route to pyrido[4,3-d]pyrimidine is the condensation reaction of 4 -aminonicotinic acid and amines (Ismail \& Wibberley, 1967). However, this method often requires a long reaction time. Recently, we have developed a new and facile regioselective annulation process, which proceeds smoothly under mild conditions via a tandem azaWittig and cyclization reaction, to synthesize novel pyrido[4,3d]pyrimidine derivatives (Zhou et al., 2005). In this paper, the crystal structure of the title compound, (I), is reported. The structure of (I) was also characterized by ${ }^{1} \mathrm{H}$ NMR, MS and elemental analyses.

(I)

The molecular structure of (I) is shown in Fig. 1. The $\mathrm{C}-\mathrm{S}$ bond lengths in the thiophene ring [1.744 (5) and 1.745 (5) A] are equivalent and long compared with the values observed in both free thiophene (1.714 A ; Bonham \& Momany, 1963). The $\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 7$ angle of 116.6 (4) ${ }^{\circ}$ is typical of a non-protonated ring system, being smaller than 120° (Ghosh \& Simonsen, 1993). The central thienopyridine ring system is nearly planar and the dihedral angle between the thiophene and pyridine planes is $0.9(1)^{\circ}$.

Experimental

The title compound was prepared according to the literature procedure of Zhou et al. (2005). Suitable crystals of (I) were obtained by

Received 26 September 2005 Accepted 10 October 2005
Online 15 October 2005
evaporation of a dichoromethane solution (m.p. 533-534 K). Analysis, calculated for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{Cl}_{4} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$: C 55.37, H 3.82, N 6.92%; found: C 55.26, H 3.93 , N 7.15%. Spectroscopis analysis: IR (KBr, v, $\left.\mathrm{cm}^{-1}\right): 3124(\mathrm{Ph}-\mathrm{H}), 2936,2859(\mathrm{C}-\mathrm{H}), 1701(\mathrm{C}=\mathrm{O}), 1616,1562$, 1517, 1489, 1161, 1051, $748 ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}, \delta$, p.p.m.): 1.65-1.81 ($\mathrm{m}, 2 \mathrm{H}, 2 \mathrm{CH}_{2}$), $2.47\left(s, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.48-2.82(m, 4 \mathrm{H}$, $\left.2 \mathrm{CH}_{2}\right), 3.05\left(s, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.91-7.58(m, 7 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) . \mathrm{MS}(\mathrm{EI}, \%): 524$ $\left(M^{+}+262\right), 523\left(M^{+}+149\right), 522\left(M^{+} 100\right), 506(19), 493$ (14), 396 (17), 380 (28).

Crystal data

```
C}\mp@subsup{\textrm{C}}{7}{}\mp@subsup{\textrm{H}}{21}{}\mp@subsup{\textrm{Cl}}{2}{}\mp@subsup{\textrm{N}}{3}{}\mp@subsup{\textrm{O}}{2}{}\textrm{S}\cdot\mp@subsup{\textrm{CH}}{2}{}\mp@subsup{\textrm{Cl}}{2}{
Mr}=607.3
Orthorhombic, Pbca
a=18.564 (3) \AA
b=10.6834 (17) \AA
c=28.510 (4) A .
V=5654.3(15) \AA}\mp@subsup{}{}{3
Z=8
D}=1.427 Mg m '3
```


Data collection

Bruker SMART CCD area-detector
diffractometer
φ and ω scans
Absorption correction: none
26881 measured reflections
4964 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.087$
$w R\left(F^{2}\right)=0.211$
$S=1.10$
4964 reflections
346 parameters
H -atom parameters constrained

Mo $K \alpha$ radiation
Cell parameters from 3753 reflections
$\theta=2.3-19.8^{\circ}$
$\mu=0.52 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate, colourless
$0.30 \times 0.20 \times 0.20 \mathrm{~mm}$

3655 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.050$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-17 \rightarrow 22$
$k=-12 \rightarrow 12$
$l=-33 \rightarrow 33$

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0768 P)^{2}\right. \\
&+7.6281 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.40 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.41 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA \mathrm{A}^{\circ}$).

C6-S1	$1.744(5)$	$\mathrm{C} 14-\mathrm{N} 2$	$1.275(5)$
$\mathrm{C} 7-\mathrm{N} 1$	$1.338(6)$	$\mathrm{C} 14-\mathrm{N} 3$	$1.370(5)$
$\mathrm{C} 7-\mathrm{S} 1$	$1.745(5)$	$\mathrm{C} 15-\mathrm{N} 3$	$1.44(5)$
$\mathrm{C} 9-\mathrm{N} 2$	$1.382(5)$	$\mathrm{C} 16-\mathrm{C} 17$	$1.377(7)$
$\mathrm{C} 11-\mathrm{N} 1$	$1.324(6)$	$\mathrm{C} 17-\mathrm{C} 18$	$1.376(7)$
$\mathrm{C} 13-\mathrm{N} 3$	$1.419(5)$		
N2-C14-N3	$126.5(4)$	$\mathrm{C} 14-\mathrm{N} 3-\mathrm{C} 15$	$121.2(3)$
O2-C14-N3	$112.0(3)$	$\mathrm{C} 13-\mathrm{N} 3-\mathrm{C} 15$	$118.5(3)$
C11-N1-C7	$116.6(4)$	$\mathrm{C} 14-\mathrm{O} 2-\mathrm{C} 21$	$116.5(3)$
C14-N2-C9	$116.6(3)$	$\mathrm{C} 6-\mathrm{S} 1-\mathrm{C} 7$	$91.2(2)$
C14-N3-C13	$120.2(3)$		

H atoms were refined with fixed geometry, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.97 \AA$, riding on their carrier atoms, with $U_{\text {iso }}(\mathrm{H})$ set to 1.2 (1.5 for the methyl H atoms) times $U_{\text {eq }}$ of the parent atom.

Figure 1
The molecular structure of the title compound, showing 50% probability displacement ellipsoids.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

The authors gratefully acknowledge financial support of this work by the National Key Project for Basic Research and the National Natural Science Foundation of China (grant Nos. 2003CB114400 and 20372023).

References

Anderson, G. L. \& Broom, A. D. (1977). J. Org. Chem. 42, 997-1001.
Bonham, R. A. \& Momany, F. A. (1963). J. Phys. Chem. 67, 2474-2477.
Bruker (1998). SMART (Version 5.618), SAINT (Version 6.02) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Ghosh, R. \& Simonsen, S. H. (1993). Acta Cryst. C49, 1031-1032.
Ismail, A. G. \& Wibberley, D. G. (1967). J. Chem. Soc. C, pp. 2613-2616.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97, University of Göttingen, Germany.
Zhou, H. B., Cui, Z. P., Liu J. C., He, H. W. \& Ding, M. W. (2005). J. Central China Normal Univ. 39, 343-346.

